M1. (a) (because the) potential of the live wire is 230 V
(and the) potential of the electrician is 0 V
(so there is a) large potential difference between live wire and electrician
charge / current passes through his body
allow voltage for potential difference
(b) diameter between 3.50 and 3.55 (mm)
allow correct use of value of cross-sectional area of 9.5 to $9.9\left(\mathrm{~mm}^{2}\right)$ with no final answer given for 1 mark
(c) $18000=\mathrm{I} \times 300$

$$
I=18000 / 300=60
$$

$$
13800=\left(60^{2}\right) \times R
$$

$$
R=13800 / 60^{2}
$$

allow $3.83(\Omega)$ with no working shown for 5 marks
answer may also be correctly calculated using $P=I V$ and V $=I R$ if 230 V is used.

M2. (a) 35
an answer with more than 2 sig figs that rounds to 35 gains 2 marks
allow 2 marks for correct method, ie $\frac{230}{6.5}$
allow 1 mark for $I=6.5(A)$ or $R=\frac{230}{26}$
an answer 8.8 gains 2 marks
an answer with more than 2 sig figs that rounds to 8.8 gains 1 mark
(b) (maximum) current exceeds maximum safe current for a $2.5 \mathrm{~mm}^{2}$ wire accept power exceeds maximum safe power for a $2.5 \mathrm{~mm}^{2}$ wire
or(maximum) current exceeds 20 (A) (maximum) current $=26(A)$ is insufficient
a $2.5 \mathrm{~mm}^{2}$ wire would overheat / melt accept socket for wire do not accept plug for wire
(c) a.c. is constantly changing direction
accept a.c. flows in two directions
accept a.c. changes direction
a.c. travels in different directions is insufficient
d.c. flows in one direction only

M3. (a) water heated by radiation (from the Sun)
accept IR / energy for radiation
water used to heat buildings / provide hot water allow for 1 mark heat from the Sun heats water if no other marks given
references to photovoltaic cells / electricity scores 0 marks
(b) 2 (minutes)
$1.4 \times 10^{3}=\frac{168 \times 10^{3}}{t}$
gains 1 mark
calculation of time of 120 (seconds) scores 2 marks
(c) (i) $150(\mathrm{kWh})$
(ii) £60(.00) or 6000 (p)
an answer of $£ 6000$ gains 1 mark
allow 1 mark for 150×0.4 (0) 150×40
allow ecf from (c)(i)
(iii) 25 (years)
an answer of 6000 / 240
or
6000 /their (c)(ii) $\times 4$
gains 2 marks
an answer of 6000 / 60
or
6000 / their (c)(ii) gains 1 mark, ignore any other multiplier of (c)(ii)
(iv) any one from:

- will get $£ 240$ per year
accept value consistent with calculated value in (c)(iii)
- amount of light is constant throughout the year
- price per unit stays the same
- condition of cells does not deteriorate
(d) any one from:
- angle of tilt of cells
- cloud cover
- season / shade by trees
- amount of dirt

M4. (a) attempt to draw four cells in series
correct circuit symbols
circuit symbol should show a long line and a short line, correctly joined together example of correct circuit symbol:

(b) (i) $6(\mathrm{~V})$
allow 1 mark for correct substitution, ie $V=3 \times 2$ scores 1 mark provided no subsequent step
(ii) 12 (V)
ecf from part (b)(i)
18-6
or
18 - their part (b)(i) scores 1 mark
(iii) $9(\Omega)$
ecf from part (b)(ii) correctly calculated 3 + their part (b)(ii) / 2
or
18 / 2 scores 1 mark provided no subsequent step
(c) (i) need a.c.

battery is d.c.

(ii) 3 (A)
allow 1 mark for correct substitution, ie $18 \times 2=12 \times l_{s}$ scores 1 mark

M5. (a) (i) generator

(ii) alternating current
(iii) voltmeter / CRO / oscilloscope / cathode ray oscilloscope
(b) (i) time
(ii) peaks and troughs in opposite directions
amplitude remains constant
dependent on first marking point
(c) any two from:

- increase speed of coil
- strengthen magnetic field
- increase area of coil
do not accept larger

